Haloo Almal

Ons hoop en ver trou dat almal ‘n aangename rustyd beleef het en weer vol energie is vir die jaar wat kom.

Die groot sukses van die eerste konferensie in Augustus verlede jaar was ‘n aangename verrassing en ons beloof dat vanjaar se konferensie net beter sal wees as ons eerste poging. Julle kan solank julle datum vir die konferensie vasmak vir die 5de tot 7de Augustus 2014. Daar sal weer twee praktiese dae wees en ‘n konferensie dag. Die tema vir vanjaar se konferensie is grondgesondheid. Daar sal weer gepoog word om ‘n oorsese besoeker/kenner op die gebiede nader te trek om as gasspreker op te tree.

The dvd set of the last conference and practical visits has been finalised and we will soon tell you how to order the set. The dvd’s are a well of knowledge of conservation agriculture in the Western Cape.

Enjoy the first issue of our newsletter for 2014 and please feel free to spread the newsletter around. Any ideas for future issues are welcome. Drop me an e-mail with suggestions.

Groete van huis tot huis
Johann Strauss
It sounds like a sci-fi movie: American farmers fighting desperately to hold back an onslaught of herbicide-defying "superweeds."

But there's nothing imaginary—or entertaining—about this scenario. Superweeds are all too real, and they have now spread to over 60 million acres of our farmland, wreaking environmental and economic havoc wherever they go.

How did we get into this mess, and how do we fix it? A 2013 UCS briefing paper, The Rise of Superweeds—and What to Do About It, answers these questions.

Roundup: the cure that super-sized the disease

The superweed problem began as a promised solution.

In the 1990s, Monsanto introduced a new line of seeds called "Roundup Ready," which were genetically engineered to be immune to glyphosate, the active ingredient in the company’s patented herbicide, Roundup.

Roundup Ready seeds were expensive, but they were widely adopted because they made weed control easier. And because glyphosate is less toxic than other common herbicides, the Roundup Ready system was hailed as an environmental breakthrough.

But there was a catch: as more and more farmers used more and more Roundup, genes for glyphosate resistance began to spread in weed populations. The growth of resistance was accelerated by a trio of factors:

- Monoculture. Growing the same crop on the same land year after year helps weeds to flourish.
- Overreliance on a single herbicide. When farmers use Roundup exclusively, resistance develops more quickly.
- Neglect of other weed control measures. The convenience of the Roundup Ready system encouraged farmers to abandon a range of practices that had been part of their weed control strategy.

This “perfect storm” of accelerating factors has quickly turned the Roundup resistance problem into a superweed crisis. And because many farmers can no longer rely on glyphosate alone, overall herbicide use in the United States—which Roundup was supposed to help reduce—has instead gone up.

Industry doubles down

The pesticide and seed industry has responded to the superweed crisis with a predictable refrain: let's do it again. A new generation of herbicide-resistant crops is awaiting USDA approval, engineered to tolerate older herbicides, such as 2,4-D and dicamba, in addition to glyphosate.
What's wrong with that?

2,4-D and dicamba belong to a chemical class that has been associated with increased rates of diseases, including non-Hodgkins lymphoma.

They are highly toxic to broadleaf crops, including many of the most common fruit and vegetable crops.

They are more prone to volatilization (air dispersal) than glyphosate, so their increased use is likely to harm neighboring farms and uncultivated areas.

On top of all these drawbacks is a more fundamental one: weeds that developed glyphosate resistance can develop resistance to the new herbicides as well—and this has already begun to happen. When major weed species develop widespread multi-herbicide resistance, farmers will really be in a bind, because there are no new herbicides coming over the horizon to save the day.

A science-based solution: healthy farms

There's a better way. Farmers can control weeds using practices grounded in the science of agroecology, including crop rotation, cover crops, judicious tillage, the use of manure and compost instead of synthetic fertilizers, and taking advantage of the weed-suppressing chemicals that some crops produce.

Such practices have benefits beyond weed control: they increase soil fertility and water-holding capacity, reduce water pollution and global warming emissions, and make the farm and its surroundings more welcoming to pollinators and other beneficial organisms.

In short, agroecological practices make the farm healthier. And recent research shows that they work.

What we should do

Despite their promise, agroecological practices have been held back by farm policies and research agendas that favor monoculture, as well as a lack of information and technical support for farmers who want to change their methods.

To encourage the adoption of these healthier practices, UCS recommends that Congress and the USDA should take the following actions:

Fund and implement the Conservation Stewardship Program, which provides support for farmers using sustainable weed control methods.
Institute new regional programs that encourage farmers to address weed problems through sustainable techniques.

Support organic farmers and those who want to transition to organic farming with research, certification, cost-sharing, and marketing programs. (Organic farming serves as a "test kitchen" for integrated weed management practices that can be broadly applied to conventional farm systems.)

Support multidisciplinary research on integrated weed management strategies and educate farmers in their use.

Bring together scientists, industry, farmers, and public interest groups to formulate plans preventing or containing the development of herbicide-resistant weeds, and make the approval of new herbicide-tolerant crops conditional on the implementation of such plans.

Fund and carry out long-term research to breed crop varieties and cover crops that compete with and control weeds more effectively.

Download: The Rise of Superweeds--and What to Do About It
One weird trick to fix farms forever

By Tom Philpott

Chatting with David Brandt outside his barn on a sunny June morning, I wonder if he doesn’t look too much like a farmer – what a casting director might call “too on the nose.” He’s a beefy man in bib overalls, a plaid shirt, and well-worn boots, with short, gray-streaked hair peeking out from a trucker hat over a round, unlined face ruddy from the sun.

Brandt farms 1,200 acres in the central Ohio village of Carroll, pop. 524. This is the domain of industrial-scale agriculture – a vast expanse of corn and soybean fields broken up only by the sprawl creeping in from Columbus. Brandt, 66, raised his kids on this farm after taking it over from his grandfather. Yet he sounds not so much like a subject of King Corn as, say, one of the organic geeks I work with on my own farm in North Carolina. In his g-droppin’ Midwestern monotone, he’s telling me about his cover crops – fall plantings that blanket the ground in winter and are allowed to rot in place come spring, a practice as eyebrow-raising in corn country as holding a naked yoga class in the pasture. The plot I can see looks just about identical to the carpet of corn that stretches from eastern Ohio to western Nebraska. But last winter it would have looked very different: While the neighbors’ fields lay fallow, Brandt’s teemed with a mix of as many as 14 different plant species.

“Our cover crops work together like a community – you have several people helping instead of one, and if one slows down, the others kind of pick it up,” he says. “We’re trying to mimic Mother Nature.” Cover crops have helped Brandt slash his use of synthetic fertilizers and herbicides. Half of his corn and soy crop is flourishing without any of either; the other half has gotten much lower applications of those pricey additives than what crop consultants around here recommend.

But Brandt’s not trying to go organic – he prefers the flexibility of being able to use conventional inputs in a pinch. He refuses, however, to compromise on one thing: tilling. Brandt never, ever tills his soil. Ripping the soil up with steel blades creates a nice, clean, weed-free bed for seeds, but it also disturbs soil microbiota and leaves dirt vulnerable to erosion. The promise of no-till, cover-crop farming is that it not only can reduce agrichemical use, but also help keep the heartland churning out food – even as extreme weather events like drought and floods become ever more common.

Those are big promises, but standing in the shade of Brandt’s barn this June morning, I hear a commotion in the nearby warehouse where he stores his cover-crop seeds. Turns out that I’m not the only one visiting Brandt’s farm. The Natural Resources Conservation Service – a branch of the U.S. Department of Agriculture that grew from Dust Bowl-era efforts to preserve soil – is holding a training for its agents on how to talk to farmers about cover crops and their relationship to soil.
Inside the warehouse, where 50-pound bags of cover-crop seeds line one wall, three dozen NRCS managers and agents, from as far away as Maine and Hawaii, are gathered along tables facing a projection screen. Brandt takes his place in front of the crowd. Presenting slides of fields flush with a combination of cover crops including hairy vetch, rye, and radishes, he becomes animated. We listen raptly and nod approvingly. It feels like a revival meeting.

“We want diversity,” Brandt thunders. “We want colonization!” – that is, to plant the cover in such a way that little to no ground remains exposed. While the cash crop brings in money and feeds people, he tells the agents, the off-season cover crops feed the soil and the hidden universe of microbes within it, doing much of the work done by chemicals on conventional farms. And the more diverse the mix of cover crops, the better the whole system works. Brandt points to the heavy, mechanically operated door at the back of the warehouse, and then motions to us in the crowd. “If we decide to lift that big door out there, we could do it,” he says. “If I try, it’s going to smash me.”

For the agency, whose mission is building soil health, Brandt has emerged as a kind of rock star. He’s a “step ahead of the game,” says Mark Scarpitti, the NRCS state agronomist for Ohio, who helped organize the training. “He’s a combination researcher, cheerleader, and promoter. He’s a good old boy, and producers relate to him.” Later, I find that the agency’s website has recently dubbed Brandt the “Obi-Wan Kenobi of soil.”

Soon, we all file outside and walk past the Brandt family’s four-acre garden. Chickens are pecking about freely, bawk-bawk-bawking and getting underfoot. In an open barn nearby, a few cows munch lackadaisically. I see pigs rooting around in another open barn 30 or so yards away and start to wonder if I haven’t stumbled into a time warp, to the place where they shot the farm scenes in The Wizard of Oz. As if to confirm it, a cow emits a plaintive moo. Brandt’s livestock are something of a hobby, “freezer meat” for his family and neighbors, but as we peer around the barns we see the edges of his real operation: a pastiche of fields stretching to the horizon.

Before we can get our hands in the dirt, Brandt wants to show us his farm equipment: the rolling contraption he drags behind his tractor to kill cover crops ahead of the spring and the shiny, fire-engine-red device he uses to drill corn and soy seeds through the dead cover crops directly into the soil. As some NRCS gearheads pepper him with questions about the tools, he beams with pride.

Finally, we all file onto an old bus for a drive around the fields. An ag nerd among professional soil geeks, I feel like I’m back in elementary school on the coolest field trip ever. An almost giddy mood pervades the bus as Brandt steers us to the side of a rural road that divides two cornfields: one of his and one of his neighbor’s.
We start in Brandt’s field, where we encounter waist-high, deep-green corn plants bask- ing in the afternoon heat. A mat of old leaves and stems covers the soil — remnants of the winter cover crops that have kept the field devoid of weeds. At Brandt’s urging, we scour the ground for what he calls “haystacks” – little clusters of dead, strawlike plant residue bunched up by earthworms. Sure enough, the stacks are everywhere. Brandt scoops one up, along with a fistful of black dirt. “Look there — and there,” he says, pointing into the dirt at pinkie-size wriggling earthworms. “And there go some babies,” he adds, indicating a few so tiny they could curl up on your fingernail.

Then he directs our gaze onto the ground where he just scooped the sample. He points out a pencil-size hole going deep into the soil – a kind of worm thruway that invites water to stream down. I don’t think I’m the only one gaping in awe, thinking of the thousands of miniature haystacks around me, each with its cadre of worms and its hole into the earth. I look around to find several NRCS people holding their own little clump of dirt, oohing and ahhing at the sight.

Then we cross the street to the neighbor’s field. Here, the corn plants look similar to Brandt’s, if a little more scraggily, but the soil couldn’t be more different. The ground, unmarked by haystacks and mostly bare of plant residue altogether, seems seized up into a moist, muddy crust, but the dirt just below the surface is almost dry. Brandt points to a pattern of ruts in the ground, cut by water that failed to absorb and gushed away. Brandt’s land managed to trap the previous night’s rain for whatever the summer brings. His neighbor’s lost not just the precious water, but untold chemical inputs that it carried away.

Aside from his fondness for worms, there are three things that set Brandt’s practices apart from those of his neighbors — and of most American farmers. The first is his dedication to off-season cover crops, which are used on just 1 percent of U.S. farmland each year. The second involves his hostility to tilling – he sold his tillage equipment in 1971. That has become somewhat more common with the rise of corn and soy varieties genetically engineered for herbicide resistance, which has allowed farmers to use chemicals instead of the plow to control weeds. But most, the NRCS’s Scarpitti says, use “rotational tillage” — they till in some years but not others, thus losing any long-term soil-building benefit.

Finally, and most simply, Brandt adds wheat to the ubiquitous corn-soy rotation favored by his peers throughout the Corn Belt. Bringing in a third crop disrupts weed and pest patterns, and a 2012 Iowa State University study found that by doing so, farmers can dramatically cut down on herbicide and other agrichemical use.

The downsides of the kind of agriculture that holds sway in the heartland – devoting large
swaths of land to monocultures of just two crops, regularly tilling the soil, and leaving the
ground fallow over winter— are by now well known: ever-increasing loads of pesticides and
titanic annual additions of synthetic and mined fertilizers, much of which ends up fouling
drinking water and feeding algae-smothered aquatic “dead zones” from Lake Erie to the
Gulf of Mexico [PDF].

But perhaps the most ominous long-term trend in the Corn Belt is what’s known as peak soil:
The Midwest still boasts one of the greatest stores of topsoil on Earth. Left mostly unfarmed
for millennia, it was enriched by interactions between carbon-sucking prairie grasses and
mobs of grass-chomping ruminants. But since settlers first started working the land [PDF] in
the 1800s, we’ve been squandering that treasure. Iowa, for example, has lost fully one-half
– and counting – of its topsoil, on average, since the prairie came under the plow. According
to University of Washington soil scientist David Montgomery, author of Dirt: The Erosion of
Civilizations, it takes between 700 and 1,500 years to generate an inch of topsoil under nat-
ural conditions.

Cornell agricultural scientist David Pimentel reckons that “90 percent of U.S. cropland now is
losing soil faster than its sustainable replacement rate.” Soil, as Americans learned in the
Dust Bowl, is not a renewable resource, at least on the scale of human lifetimes.

Then there’s climate change itself. Under natural conditions – think forests or grasslands – soil
acts as a sponge for carbon dioxide, sucking it in through plant respiration and storing a lit-
tle more each year than is lost to oxidation in the process of rotting. But under current farm-
ing practices, U.S. farmland only acts as what the USDA has deemed a “modest carbon
sink” – sequestering 4 million metric tons of carbon annually, a tiny fraction of total U.S.
greenhouse gas emissions.

The good news, says eminent soil scientist Rattan Lal of Ohio State University, is that if all U.S.
farms adopted Brandt-style agriculture, they could suck down as much as 25 times more
carbon than they currently are – equivalent to taking nearly 10 percent of the U.S. car fleet
off the road. (Lal, a member of the Nobel-winning International Panel on Climate Change,
is so impressed with Brandt’s methods that he brought a group of 20 Australian farmers on a
pilgrimage to Carroll two years ago, he tells me.)

In the middle of his cornfield, holding a handful of loamy, black soil, Brandt explains that he
habitually tests his dirt for organic matter. When he began renting this particular field two
seasons before, its organic content stood at 0.25 percent – a pathetic reading in an area
where, even in fields farmed conventionally, the level typically hovers between 1 and 2
percent. In just two years of intensive cover cropping, this field has risen to 1.25 percent.
Within 10 years of his management style, he adds, his fields typically reach as high as 4 per-
cent, and with more time can exceed 5 percent.
Building up organic matter is critical to keeping the heartland humming as the climate heats up. The severe drought that parched the Corn Belt last year – as well as the floods that have roared through in recent years – are a harbinger of what the 2013 National Climate Assessment calls a “rising incidence of weather extremes” that will have “increasingly negative impacts” on crop yields in the coming decades.

As Ohio State soil scientist Rafiq Islam explains, Brandt’s legume cover crops, which trap nitrogen from the air and store it in nodules at their roots, allow him to grow nitrogen right on his farm, rather than importing it in the form of synthetic fertilizer. And the “complex biological systems” created by cover crops marginalize crop-chomping bugs and disease-causing organisms like molds – meaning fewer insecticides and fungicides.

Nor is Brandt any less productive than his chemical-intensive peers, Islam says. Quite the opposite. Brandt’s farm regularly achieves crop yields that exceed the county average, and during last year’s brutal drought, his yields were near the normal season average while other farmers saw yields drop 50 percent – or lost their crop entirely.

The morning after our field trip, we reconvene in Brandt’s barn to take in a series of simple soil demonstrations. I don’t say “we” lightly – by now, I’ve been more or less accepted into the NRCS crew’s soil geek club. At a table at the front of the room, an NRCS man dressed in country casual – faded jeans, striped polo shirt, baseball cap – drops five clumps of soil into water-filled beakers: three from farms managed like Brandt’s, with cover crops and without tillage, the others from conventional operations. The Brandt-style samples hold together, barely discoloring the water. The fourth one holds together too, but for a different reason: Unlike the no-till/cover-crop samples, which the water had penetrated, this one was so compacted from tillage that no water could get in at all. The fifth one disintegrates before our eyes, turning the water into a cloudy mess that the NRCS presenter compares to “last night’s beer.”

Other demos are equally graphic – including one that shows how water runs through Brandt’s gold-standard dirt as if through a sieve, picking up little color. In the conventional soil, it pools on top in a cloudy mess, demonstrating that the soil’s density, or compaction, can cause runoff. The presenter recalls a recent Des Moines Register article about how a wet spring caused a torrent of nitrogen runoff into the city’s drinking-water sources, prompting health concerns and expensive filtration efforts.
BioAg Alliance, they are calling it, a venture to use microbes and fungi to enhance crop growth and yield, help with pest resistance, and reduce inputs like water. Monsanto paid Novozymes $300 million to partner in this “game changing” venture. Monsanto will do marketing and field testing. Novozymes will do the manufacturing.

Today, the headlines are everywhere about this announcement, but the articles all say the same basic, vague things. Here at B.P.A. let’s learn more.

First of all, this will rock the world of agribusiness stereotypes. People conjure up their own images of the company Monsanto, that goes without saying. Certainly, my own impression of the Danish company Novozymes is not so green, as I’ve seen the massive building which abuts the Missouri River in Blair, Nebraska, that turns out the enzymes used for ethanol production and sits next to Cargill’s massive corn processing plant, and I know what the park-like setting looked like before this industrial complex was there.

My initial reaction to this announcement is that this venture has enormous potential, is, as they are saying, a game changer, and, it is also very green. I suspect, also, that Monsanto doesn’t want to be left out of a future where the cost-competitive advantages of more sustainable production methods using fewer expensive inputs could take off. Using biologicals to enhance yields instead of chemicals has the potential to be a game changer that could help lower the input costs for farmers. Let’s hope.

This whole subject is HOT, HOT, HOT. It received little fanfare at the time, but earlier this year, the American Academy of Microbiology came out with a report, “HOW MICROBES CAN HELP FEED THE WORLD, 2013.” According to the report summary, improved understanding of plant-microbe interactions has the potential to increase crop productivity by 20% while reducing fertilizer and pesticide requirements by 20%, within 20 years. The ASM PDF report reads like a confirmation of Gaia hypothesis.

Here are a few quotes from the Monsanto and Novozymes spokespersons:

“...(this) represents the next layer of opportunity for growers to drive yield and productivity while helping the preservation of finite natural resources in our precious planet,” Robb Fraley, Monsanto’s chief technology officer said.
Novozymes CEO, Peder Holk Nielsen, said that to meet world demand, farmers must produce more food in the next 50 years than they have in the last 10,000 years while using the planet’s land, water and other resources wisely. Nielsen also said that harnessing the beneficial effects of microorganisms has “an untapped potential for biological solutions for agriculture. These products do work. ... I believe we are rewriting agricultural history.”

While some of the articles covering this story today are saying this will be used for vegetable and fruit crops, the Novozymes website “BioAg Alliance” page shows photos of corn, soybean, and wheat fields.

The following is a direct excerpt from Novozymes website:

WHAT ARE AGRICULTURAL BIOLOGICALS?

Agricultural biologicals is an umbrella term for microbials, plant extracts, beneficial insects and other organic material used by farmers to increase crop health and productivity.

Microbial-based products are derived from naturally-occurring microorganisms such as bacteria and fungi. They are normally applied to seeds before planting, in-furrow or sprayed on crops, and they protect crops from pests and diseases and enhance plant productivity and fertility. With faster development cycles compared to other agricultural innovations, as well as broad geographic and crop applicability, microbial solutions offer tremendous potential to deliver sustainable, cost-effective solutions that can increase yield using less input.

Agricultural biologicals today represent roughly $2.3 billion in annual sales and have for the last several years posted double-digit percent revenue growth annually.

According to Nielsen, both companies already have products on the market and have been doing work on biologicals.

Next, let’s speculate on what, exactly all of these vague comments about game changing microbials are about.

Somewhere in the mix, one might expect them to use Mycorrhiza:

I’ve defined Mycorrhiza here previously, in this brief summary:

Mycorrhiza, which means “root-fungus” grows in healthy soils and functions symbiotically with plants by enhancing the uptake of phosphorus and other nutrients. The fungus attaches to plant roots, increasing the root surface area which comes in contact with the soil. It excretes enzymes which allow it to dissolve soil nutrients, and extends the life of the root. Mycorrhizal fungus greatly amplifies the ability of plant roots to uptake and reuse phosphorus.

This fungus increases the drought tolerance of plants and can reduce water needs by 25 percent. It increases the fruit and flowering of plants while reducing the need for water and fertilizer. It also enables plants to grow in salty or contaminated soils and increases the
temperature stress tolerance for plants. It helps protect plants from disease, and helps store carbon in the soil. Mycorrhiza has the potential to bring poor and degraded lands back into cultivation.

It is possible to encourage mycorrhiza growth in soils by adding compost to your garden soil, by not using synthetic chemicals, using minimum tillage, rotating crops, and growing cover crops. By cold composting, or mulching your garden with shredded leaves each fall, you can promote optimal Mycorrhizal fungi growth. Or, it can be purchased and added directly to sterile potting soils, or degraded soil.

Novozymes says they already have a product that coats seeds with a fungus “that grows along the plant’s roots and produces phosphates, promoting growth and saving chemical fertilizer.” UPDATE: This product, called JumpStart uses the bacterium penicillium bilaiii.

Another root-colonizing, helpful bacteria is Rhizobacteria, which form symbiotic relationships with plants, and are generally thought of as important to biofertilizer producers. Rhizobacteria help with nitrogen fixation, and thus enhance plant growth. Inoculating them onto seed can encourage them to colonize the root zones of plants. The rhizosphere, which is the ecosystem around the roots of plants, includes many microorganisms. There are subsistence farmers in India, for example, who know how to use these bacteria to their advantage, according to a friend of this site who also works on similar products.

More thoughts...

In Joel Salatin types of farming methods, soils are already teaming with plant growth-enhancing microbials. And today, some sustainable farming advocates are finding that by using multiple varieties of seeds in cover crops, as on this North Dakota farm that I’ve featured here before, these microbials take off and do save water and fertilizer inputs while producing great crop yields. Useful microbes already exist in healthy soils and there are methods which encourage them to thrive. Today’s industrial agriculture system is not one of them. It would make so much more sense to work with Nature’s wisdom, rather than destroy it and then try to rebuild it.

Some say that the ubiquitous microbials need to be specific for the region and location to match the soils and environment unique to the region. Many say that the life world which teams beneath our feet in soil is a future frontier, a mystery yet to be explored. In healthy soil, there seems to be an infinite variety of microbial life. This whole subject is ripe for discovery, as it relates to carbon storage, too.

Many scientists, smaller companies, and individuals have been studying these microbes for a long time, and some already have products on the market.

It is encouraging to see that the future of industrial agriculture is taking a new direction towards sustainability. Good seeds with sustainable practices sounds like a winner to me.
Die webtuiste is so opgestel dat enige iemand wat registreer (geen koste verbonde) foto's en videos kan oplaai en selfs vrae kan vra oor probleme wat hulle ondervind en dat antwoorde gegee kan word deur medeprodusente en kundiges. Daar sal ook ‘n databank van die vrae gehou word as daar in die toekoms weer so ‘n vraag opduik.

Ons beplan ook om deur die loop van die jaar videos te maak en beskikbaar te stel, waar kundiges oor spesifieke onderwerpe gesels. Ek wil almal uitnooi om deel te raak van ‘n lewendige webtuiste wat spesifiek gebou is om ons bewaringslandbougemeenskap in die Wes-Kaap te ondersteun. Toekomstige nuusbriewe sal ook op die webtuiste beskikbaar wees.

Van volgende jaar af sal die nuusbrief slegs kort grepe uit artikels bevat en datums deurgee van groen en bruintoere. Die volledige artikels sal op die webtuiste beskikbaar wees.

Die webadres is as volg:

www.blwk.co.za

Sien julle almal aanlyn......................
Inligting ten opsigte van die Bewaring Slanbouuvereniging se ledegeld

Ons ledeetal het aansienlik gegroei gedurende die jaar en het ons die 50 merk verbygesteek.

Ons sal in die komende jaar fakture uitstuur aan huidige lede en andere vir die hemuwing van ledegeld of nuwe lidmaatskap.

Ledegeld beloop R200 per plaas, met 'n maksimum van 2 lede wat toegelaat word, vir elke 2 bykomende lidmaatskappe sal 'n verdere R200 betaalbaar wees.

Hierdie reëling geld ook ten opsigte van ander instansies soos chemiese agente ens.

Aangeheg is die kontak besonderhede van ons finansiële mense. Indien iemand wil aansluit kan hulle net 'n e-pos stuur aan Gerty Mostert en dan sal sy vir julle 'n faktuur stuur.

Die ledegeld gaan vir die instandhouding van die webtuiste. Asook vir verserings gedurende bruin- en groentoere gedurende die seisoen.

Kontakbesonderhede:
BLWK/CAWC
Gerty Mostert (gertym@elsenburg.com)
Verskaf asb in die e-pos die naam van die plaas of instansie en die persoon aan wie faktuur uitgemaak moet word.