Hallo Almal

Mens kan nie glo dit is alweer die einde van April nie. Planttyd is op ons en baie van die boere in die Suid-Kaap is al hard aan die plant. Op Riversdal is daar al hawer wat al ver gevorderd is. Die wisselbou proef op die Riversdal vlakte is ook al in die grond en gaan daar weer vanjaar 'n magdom kleiner proewe en demo-proewe te sien wees.

The southern Cape has seen some excellent summer rainfall and at Tygerhoek Research farm more than 300mm of rain has fallen from January till today, while the Swartland remains dry. Just to inform you all that there will be a planter demo trial at SKOG and Tygerhoek this year as well.

Dit is met groot entoesiasme waarmee ons uitsien na die 2014 BLWK symposium in Agustus en julle kan reeds julle kalenders vasmaak vir die 5de tot die 7de. Daar is 'n kort berigjie in die nuusbrief.

Well, enjoy the reading material and good luck with the planting season.

Groete van huis tot huis

Johann Strauss
Video materiaal now available

It is really a happy occasion to introduce to you the video material taken during the 2013 conference week. Sorry it took such a long time.

The practical visits' and the full conference day has been put on a 32GB flash drive. The alternative would have been DVD's, but the cost of writing the 11 DVD's was on par with the cost of the flash drive. The cost of the material is R250. No profit is made on the drive.

If you would like to order the material send me an email to johannst@elsenburg.com. We will then send you an invoice for the drive. As soon as payment has been made and a copy of the proof of payment reaches us, the drive will be sent to you. Please make sure to include in the email to whom the invoice must be made out to, as well as the postal address.
GROENTOER

11 Junie 2014

Tygerhoek Navorsingsplaas

Ons nooi almal hartlik uit om die eerste groentoer van die jaar te kom meemaak.

Die groentoer sal in die vorm van ’n “walk-en-talk” wees en beplan om deur die wisselbou en ander proewe te beweeg en te gesels oor probleme, suksesse en nuwe moontlikhede. Daar is ook ’n planter demonstrasie proef tussen ’n tandplanter en twee skyfplanters.

Teken dit solank aan op jullie kalenders.

Waar: Tygerhoek Navorsingsplaas, Riviersonderend
Wanneer: 11 Junie 2014
Tyd: 09h30 vir 10h00
RSVP: Dr Johann Strauss by johannst@elsenburg.com of 0829073109 teen 6 Junie.
UNIVERSITY PARK, Pa. -- Planting cover crops in rotation between cash crops -- widely agreed to be ecologically beneficial -- is even more valuable than previously thought, according to a team of agronomists, entomologists, agroecologists, horticulturists and biogeochemists from Penn State's College of Agricultural Sciences.

"As society places increasing demands on agricultural land beyond food production to include ecosystem services, we needed a new way to evaluate 'success' in agriculture," said Jason Kaye, professor of biogeochemistry. "This research presents a framework for considering a suite of ecosystem services that could be derived from agricultural land, and how cover crops affect that suite of services.

"Cover cropping is one of the most rapidly growing soil and water conservation strategies in the Chesapeake Bay region and one we are really counting on for future improvements in water quality in the bay. Our analysis shows how the effort to improve water quality with cover crops will affect other ecosystem services that we expect from agricultural land."

The research, published in the March issue of Agricultural Systems, quantified the benefits offered by cover crops across more than 10 ecosystem services. Benefits included increased carbon and nitrogen in soils, erosion prevention, more mycorrhizal colonization -- beneficial soil fungus that helps plants absorb nutrients -- and weed suppression.

Lead researcher Meagan Schipanski explained that commonly used measurements of ecosystem services can be misleading due to the episodic nature of some services and the time sensitivity of management windows.

"For example, nutrient-retention benefits occur primarily during cover crop growth, weed-suppression benefits occur during cash-crop growth through a cover crop legacy effect, and soil-carbon benefits accrue slowly over decades," she said. "By integrating a suite of ecosystem services into a unified analytical framework, we highlighted the potential for cover crops to influence a wide array of ecosystem services. We estimated that cover crops increased eight of 11 ecosystem services. In addition, we demonstrated the importance of considering temporal dynamics when assessing management system effects on ecosystem services."
Trade-offs occurred between economic metrics and environmental benefits, said Schipanski, who was a postdoctoral scholar at Penn State when she led the cover crop study. Now an assistant professor in the department of soil and crop sciences at Colorado State University, she noted that the planting of cover crops will become more attractive if fertilizer prices rise or if modest cost-sharing programs like the one currently in place in Maryland are developed. Researchers simulated a three-year, soybean-wheat-corn rotation with and without cover crops in central Pennsylvania, which presented agroecological conditions broadly representative of the Northeast and mid-Atlantic regions. The cover crop rotation included red clover, frost-seeded into winter wheat in March, and winter rye, planted after corn was harvested in the fall. The research, funded by the U.S. Department of Agriculture, used simulated management practices, including tillage, synthetic fertilizer use and mechanical weed control. The planting of cover crops already is accepted as an environmentally prudent practice. It is so beneficial, in fact, that the National Resource Conservation Service last month set a goal to increase the acres planted nationally in cover crops from the current 2 million to 20 million by 2020.

According to NRCS, in 2006 only 5 percent of cropped acres in the Chesapeake Bay region had cover crops planted every year, and 88 percent of acres never had any cover crops planted. In 2011, 52 percent of acres had cover crops planted at least once every four years, and 18 percent of acres had cover crops planted every year. The NRCS estimated that the increased annual use of cover crops in 2011 led to an average 78 percent reduction in sediment loss, 35 percent less nitrogen surface loss, a 40 percent cut in nitrogen subsurface loss, and a 30 percent decrease in total phosphorus loss.

But many farmers have not planted cover crops because they have not seen financial incentives to do so, according to Kaye. That is largely because the traditional method of calculating the economic value of cover crops used by agricultural producers -- only estimating the resulting increase to cash-crop yields over a short period -- was not compelling.

"The most common metrics for evaluating cropping systems are grain and forage yields and short-term profitability," he said. "Within this context, cover crops are treated as a tool to be used only if they do not interfere with cash-crop production."

In addition to Schipanski and Kaye, the researchers included Mary Barbercheck, professor of entomology; Margaret Douglas, doctoral candidate in entomology; Denise Finney, doctoral candidate in ecology; Kristin Haider, former master's degree student in plant science; Armen Kemanian, assistant professor of plant science; David Mortensen, professor of weed ecology; Matthew Ryan, former postdoctoral scholar at Penn State and now assistant professor at Cornell University; John Tooker, assistant professor of entomology; and Charles White, extension associate in entomology.
World agriculture is now facing challenges unlike any before. Producing enough grain to make it to the next harvest has challenged farmers ever since agriculture began, but now the challenge is deepening as new trends—falling water tables, plateauing grain yields, and rising temperatures—join soil erosion to make it difficult to expand production fast enough. As a result, world grain carryover stocks have dropped from an average of 107 days of consumption a decade or so ago to 74 days in recent years.

World food prices have more than doubled over the last decade. Those who live in the United States, where 9 percent of income goes for food, are largely insulated from these price shifts. But how do those who live on the lower rungs of the global economic ladder cope? They were already spending 50–70 percent of their income on food. Many were down to one meal a day before the price rises. Now millions of families routinely schedule one or more days each week when they will not eat at all. What happens with the next price surge? Belt tightening has worked for some of the poorest people so far, but this cannot go much further. Spreading food unrest will likely lead to political instability. We could see a breakdown of political systems. Some governments may fall.

As food supplies have tightened, a new geopolitics of food has emerged—a world in which the global competition for land and water is intensifying and each country is fending for itself. We cannot claim that we are unaware of the trends that are undermining our food supply and thus our civilization. We know what we need to do. There was a time when if we got into trouble on the food front, ministries of agriculture would offer farmers more financial incentives, like higher price supports, and things would soon return to normal. But responding to the tightening of food supplies today is a far more complex undertaking. It involves the ministries of energy, water resources, transportation, and health and family planning, among others. Because of the looming specter of climate change that is threatening to disrupt agriculture, we may find that energy policies will have an even greater effect on future food security than agricultural policies do. In short, avoiding a breakdown in the food system requires the mobilization of our entire society.
On the demand side of the food equation, there are four pressing needs—to stabilize world population, eradicate poverty, reduce excessive meat consumption, and reverse biofuels policies that encourage the use of food, land, or water that could otherwise be used to feed people. We need to press forward on all four fronts at the same time.

The first two goals are closely related. Indeed, stabilizing population depends on eliminating poverty. Even a cursory look at population growth rates shows that the countries where population size has stabilized are virtually all high-income countries. On the other side of the coin, nearly all countries with high population growth rates are on the low end of the global economic ladder.

The world needs to focus on filling the gap in reproductive health care and family planning while working to eradicate poverty. Progress on one will reinforce progress on the other. Two cornerstones of eradicating poverty are making sure that all children—both boys and girls—get at least an elementary school education and rudimentary health care. And the poorest countries need a school lunch program, one that will encourage families to send children to school and that will enable them to learn once they get there. Shifting to smaller families has many benefits. For one, there will be fewer people at the dinner table. It comes as no surprise that a disproportionate share of malnutrition is found in larger families. At the other end of the food spectrum, a large segment of the world’s people are consuming animal products at a level that is unhealthy and contributing to obesity and cardiovascular disease. The good news is that when the affluent consume less meat, milk, and eggs, it improves their health. When meat consumption falls in the United States, as it recently has, this frees up grain for direct consumption. Moving down the food chain also lessens pressure on the earth’s land and water resources. In short, it is a win-win-win situation.

Another initiative, one that can quickly lower food prices, is the cancellation of biofuel mandates. There is no social justification for the massive conversion of food into fuel for cars. With plug-in hybrids and all-electric cars coming to market that can run on local wind-generated electricity at a gasoline-equivalent cost of 80¢ per gallon, why keep burning costly fuel at four times the price? On the supply side of the food equation, we face several challenges, including stabilizing climate, raising water productivity, and conserving soil. Stabilizing climate is not easy, but it can be done if we act quickly. It will take a huge cut in carbon emissions, some 80 percent within a decade, to give us a chance of avoiding the worst consequences of climate change. This means a wholesale restructuring of the world energy economy. The easiest way to do this is to restructure the tax system. The market has many strengths, but it also has some dangerous weaknesses. It readily captures the direct costs of mining coal and delivering it to power plants. But the market does not incorporate the indirect costs of fossil fuels in prices, such as the costs to society of global warming. Sir Nicholas Stern, former chief economist at the World Bank, noted when releasing his landmark study on the costs of climate change that climate change was the product of a massive market failure.
The goal of restructuring taxes is to lower income taxes and raise carbon taxes so that the cost of climate change and other indirect costs of fossil fuel use are incorporated in market prices. If we can get the market to tell the truth, the transition from coal and oil to wind, solar, and geothermal energy will move very fast. If we remove the massive subsidies to the fossil fuel industry, we will move even faster. Although to some people this energy transition may seem farfetched, it is moving ahead, and at an exciting pace in some countries. For example, four states in northern Germany now get at least 46 percent of their electricity from wind. For Denmark, the figure is 26 percent. In the United States, both Iowa and South Dakota now get one fifth of their electricity from wind farms. Solar power in Europe can now satisfy the electricity needs of some 15 million households. Kenya now gets one fifth of its electricity from geothermal energy. And Indonesia is shooting for 9,500 megawatts of geothermal generating capacity by 2025, which would meet 56 percent of current electricity needs.

In addition to the carbon tax, we need to reduce dependence on the automobile by upgrading public transportation worldwide to European standards. Where cars are used, the emphasis should be on electrifying them. The world has already partly electrified its passenger rail systems. As we shift from traditional oil-powered engines to plug-in hybrids and all-electric cars, we can substitute electricity from renewable sources for oil. In the meantime, as the U.S. automobile fleet, which peaked in 2008, shrinks, U.S. gasoline use will continue the decline of recent years. This decline, in the country that consumes more gasoline than the next 16 countries combined, is a welcome new trend. Along with stabilizing climate, another key component to avoiding a breakdown in the food system is to raise water productivity. This could be patterned after the worldwide effort launched over a half-century ago to raise cropland productivity. This extraordinarily successful earlier endeavor tripled the world grain yield per acre between 1950 and 2011.

Raising water productivity begins with agriculture, simply because 70 percent of all water use goes to irrigation. Some irrigation technologies are much more efficient than others. The least efficient are flood and furrow irrigation. Sprinkler irrigation, using the center-pivot systems that are widely seen in the crop circles in the western U.S. Great Plains, and drip irrigation are far more efficient. The advantage of drip irrigation is that it applies water very slowly at a rate that the plants can use, losing little to evaporation. It simultaneously raises yields and reduces water use. Because it is labor-intensive, it is used primarily to produce high-value vegetable crops or in orchards. Another option is to encourage the use of more water-efficient crops, such as wheat, instead of rice. Egypt, for example, limits the production of rice. China banned rice production in the Beijing region. Moving down the food chain also saves water. Although urban water use is relatively small compared with that used for irrigation, cities too can save water. Some cities now are beginning to recycle much if not most of the water they use. Singapore, whose freshwater supplies are severely restricted by geography, relies on a graduated water tax—the more water you use, the more you pay per gallon—and an extensive water recycling program to meet the needs
of its 5 million residents. The key to raising water use efficiency is price policy. Because wa-
ter is routinely underpriced, especially that used for irrigation, it is used wastefully. Pricing
water to encourage conservation could lead to huge gains in water use efficiency, in ef-
fect expanding the supply that could in turn be used to expand the irrigated area. The
third big supply-side challenge after stabilizing climate and raising water productivity is
controlling soil erosion. With topsoil blowing away at a record rate and two huge dust
bowls forming in Asia and Africa, stabilizing soils will take a heavy investment in conserva-
tion measures. Perhaps the best example of a large-scale effort to reduce soil erosion
came in the 1930s, after a combination of overplowing and land mismanagement creat-
ed a dust bowl that threatened to turn the U.S. Great Plains into a vast desert.

In response to this traumatic experience, the United States introduced revolutionary
changes in agricultural practices, including returning highly erodible land to grass, terrac-
ing, planting tree shelterbelts, and strip cropping (planting wheat on alternative strips with
fallowed land each year). The government also created a remarkably successful new
agency in the U.S. Department of Agriculture—the Soil Conservation Service—whose sole
responsibility was to manage and protect soils in the United States. Another valuable tool
in the soil conservation tool kit is no-till farming. Instead of the traditional practice of plow-
ing land and discing or harrowing it to prepare the seedbed, and then using a mechani-
cal cultivator to control weeds in row crops, farmers simply drill seeds directly through crop
residues into undisturbed soil, controlling weeds with herbicides when necessary. In addi-
tion to reducing erosion, this practice retains water, raises soil organic matter content, and
greatly reduces energy use for tillage. In the United States, the no-till area went from 7 mil-
lion hectares in 1990 to 26 million hectares (67 million acres) in 2007. Now widely used in
the production of corn and soybeans, no-till agriculture has spread rapidly in the western
hemisphere, covering 26 million hectares each in Brazil and Argentina and 13 million hec-
tares in Canada. Australia, with 17 million hectares, rounds out the five leading no-till
countries.

If we pursue the initiatives on both sides of the food equation as just outlined, we can re-
build world grain stocks to the level needed to improve food security. Since we no longer
have idled cropland to bring back into production, our only cushion in the event of a dis-
astrous world harvest is these carryover stocks. No one knows for sure what level of stocks
would be adequate today, but if stocks equal to 70 days of grain consumption were suffi-
cient 40 years ago, then today we should plan on stocks equal to at least 110 days of
consumption to take into account the more extreme weather events that come with cli-
mate change.

These initiatives do not constitute a menu from which to pick and choose. We need to
take all these actions simultaneously. They reinforce each other. We will not likely be able
to stabilize population unless we eradicate poverty. We will not likely be able to restore
the earth’s natural systems without stabilizing population and stabilizing climate. Nor can
we eradicate poverty without reversing the decline of the earth’s natural systems.
Achieving all these goals to reduce demand and increase supply requires that we redefine security. We have inherited a definition of security from the last century, a century dominated by two world wars and a cold war, that is almost exclusively military in focus. When the term national security comes up in Washington, people automatically think of expanded military budgets and more-advanced weapon systems. But armed aggression is no longer the principal threat to our future. The overriding threats in this century are climate change, population growth, spreading water shortages, rising food prices, and politically failing states.

It is no longer possible to separate food security and security more broadly defined. It is time to redefine security not just in an intellectual sense but also in a fiscal sense. We have the resources we need to fill the family planning gap, to eradicate poverty, and to raise water productivity, but these measures require a reallocation of our fiscal resources to respond to the new security threats. Beyond this, diverting a big chunk of the largely obsolete military budget into incentives to invest in rooftop solar panels, wind farms, geothermal power plants, and more energy-efficient lighting and household appliances would accelerate the energy transition. The incentives needed to jump-start this massive energy restructuring are large, but not beyond our reach. We can justify this expense simply by considering the potentially unbearable costs of continuing with business as usual.

We have to mobilize quickly. Time is our scarcest resource. Success depends on moving at wartime speed. It means, for example, transforming the world energy economy at a pace reminiscent of the restructuring of the U.S. industrial economy in 1942 following the Japanese surprise attack on Pearl Harbor on December 7, 1941. On January 6, 1942, a month after the attack, Franklin D. Roosevelt outlined arms production goals in his State of the Union address to the U.S. Congress and the American people. He said the United States was going to produce 45,000 tanks, 60,000 planes, and thousands of ships. Given that the country was still in a depression-mode economy, people wondered how this could be done. It required a fundamental reordering of priorities and some bold moves. The key to the 1942 industrial restructuring was the government’s ban on the sale of cars that forced the auto industry into arms manufacturing. The ban lasted from early 1942 until the end of 1944. Every one of President Roosevelt’s arms production goals was exceeded.

If the United States could totally transform its industrial economy in a matter of months in 1942, then certainly it can lead the world in restructuring the energy economy, stabilizing population, and rebuilding world grain stocks. The stakes now are even higher than they were in 1942. The challenge then was to save the democratic way of life, which was threatened by the fast-expanding empires of Nazi Germany and Imperial Japan. Today the challenge is to save civilization itself. Scientists and many other concerned individuals have long sensed that the world economy had moved onto an environmentally unsustainable path. This has been evident to anyone who tracks trends such as deforestation, soil erosion, aquifer depletion, collapsing fisheries, and the increase in carbon dioxide in the
atmosphere. What was not so clear was exactly where this unsustainable path would lead. It now seems that the most imminent effect will be tightening supplies of food. Food is the weak link in our modern civilization—just as it was for the Sumerians, Mayans, and many other civilizations that have come and gone. They could not separate their fate from that of their food supply. Nor can we.

The challenge now is to move our early twenty-first-century civilization onto a sustainable path. Every one of us needs to be involved. This is not just a matter of adjusting lifestyles by changing light bulbs or recycling newspapers, important though those actions are. Environmentalists have talked for decades about saving the planet, but now the challenge is to save civilization itself. This is about restructuring the world energy economy and doing it before climate change spirals out of control and before food shortages overwhelm our political system. And this means becoming politically active, working to reach the goals outlined above.

We all need to select an issue and go to work on it. Find some friends who share your concern and get to work. The overriding priority is redefining security and reallocating fiscal resources accordingly. If your major concern is population growth, join one of the internationally oriented groups and lobby to fill the family planning gap. If your overriding concern is climate change, join the effort to close coal-fired power plants. We can prevent a breakdown of the food system, but it will require a huge political effort undertaken on many fronts and with a fierce sense of urgency.

We all have a stake in the future of civilization. Many of us have children. Some of us have grandchildren. We know what we have to do. It is up to you and me to do it. Saving civilization is not a spectator sport.
Conservation agriculture: A dynamic approach for continuing biomass production under rain-fed conditions of the Mediterranean climate

Ben-Hammouda M et al
Tunisia

Introduction

Under rain-fed conditions, farmers of the South Mediterranean experience difficulties in getting adequate economic returns with conventional agricultural techniques which require costly inputs for a relatively low and unstable yield of a (generally) single crop. Water resources are also becoming increasingly scarce and arable land is under continuous pressure from growing urbanization, leaving little room for farmers to adjust. Sarkiss et al. (1994) reported that rain-fall in the Tunisian climate is variable year-to-year, regardless of the agro-ecological zone, but this not the case for temperature. Rain variability within and between seasons can be observed within the same year, and Stewart (2007) showed that practices that work well one year may not work nearly as well in an the next. There is a growing need for a change in management of the soil-plant-atmosphere continuum, and conservation agriculture (CA) proposed since the 1970’s as an alternative system of natural resource management has the potential to reduce production costs and crop yield variability, while offering the possibility of continuous biomass production under rain-fed conditions and improved water efficiency under irrigation.

Farmers need to adopt alternative techniques to better cope with climate variability by adapting crop rotations to varying season conditions, especially with regard to highly variable rainfall. They would therefore be no real purpose in adopting one crop sequence, such as cereal/legume. A farmer might instead grow silage, hay, grains, cover crop, ‘catch’ crop, or any suitable combination of thereof. This flexible mode of crop management would be better suited to cereal-legume/animal (sheep) based production systems, and this dynamic approach to crop production depends on appropriate agronomic sequencing (Ben-Hammouda et al., 2009) rather than a fixed rotation. Such systems need a comprehensive and integrative agro-climatic characterization of the environment, including periods of water deficits (Gardner et al., 1985), and active vegetative growth, probability of opening and late rains, monthly and seasonal rains, soil water dynamics, soil organic matter, etc. in relation to crop production requirements.

Material and Methods

Field experimentation was conducted on a loam soil (Donahue et al., 1983) in the Oued-Zergua/Beja-Governorate (Lat: 36°43′37.10″; Long: 9°27′09.33″). This is a semi-arid zone of
Tunisia that receives an annual average rainfall of 363 mm with 26% variability over the last 4 years (Figure 1). A monthly rain diagram was used to properly identify early and late rains, together with the growth cycle of crops, including potential legumes (Figure 2). Periods of potential active vegetative growth of grazing crops were determined using an ombro-thermic diagram (Dupont and Compère 1997). An equal mix of oat (Avena sativa L.) and fenugreek (Trigonella foenum-graceum L.) was sown Mid-October 2008 at a seeding rate of 100 kg/ha and harvested for silage in early April 2009. Immediately following silage harvest, lucerne (Medicago sativa L.) was sown at a seeding rate of 25 kg/ha. After an opening rain (35 mm) in September 2009, a 200 sheep flock grazed the field. In late-October 2009, bread wheat (Triticum aestivum L.) was sown into the lucerne residues at a seeding rate of 170 kg/ha. For a legume/legume relay cropping, lucerne was sown in late-March 2009 after 40 mm of rain on peas (Pisum sativum L.), grown from late-January/09 at 68 cm interrow spacing and 120 kg/ha seeding rate. Standard cultural practices for semi-arid production (weed/fungal disease control, nitrogen and phosphorus application, insect/pest management, etc.), were applied for all crop sequences in this CA package.

Results and Discussion

Since the 08/09 growing season, continuous and sometimes relay cropping of these cereal/legume and legume/legume systems has been successfully practiced in rain-fed conditions of this semi-arid climate. The mix of oat and fenugreek sown in Mid-October/08 was harvested as silage in early-April 2009, with a biomass yield of 12 t/ha. Lucerne which was sown the same day as silage harvest yielded 4 t/ha Late-July 2009. After an opening rain (35 mm) in September 2009, a 200 sheep flock grazed the field for 5 days for 2 h/day/ha, and taking advantage of an Early-October rain an additional 5 ha were cut before sowing bread-wheat. In late-October 2009, bread wheat sown on lucerne as a cover crop yielded 2.8 t/ha, 0.2 t/ha less than a 1 crop/year bread-wheat/bread-wheat CA rotation. Continuous biomass production of bread-wheat/lucerne system continues at the same rate for the 10/11 growing season. In legume/legume relay cropping, lucerne sown on peas yielded 6.0 t/ha in late-May 2009, and has been grazed with a 200 sheep flock for 5 days at 2 head/ha. A 3.7 t/ha additional biomass of lucerne was harvested following an early-fall of 40 mm rain in September 2009 at the start of a promising 09/10 cereal growing season. This legume/legume scenario is an important break from the typical one crop a year mode frequently encountered under rain-fed conditions in semi-arid regions.

The continuing cereal/legume or a relay cropping in the case of a legume/legume sequence were possible with the early and late rains of October and April-May, respectively (Figure 2). The accumulation of heat units also appeared to be well matched with the rainfall (Figure 3), making a continuous biomass production a reality for this farm system. These examples of dynamic agronomic sequencing are among much attempts to apply the opportunity cropping concept, properly developed and adjusted for the Mediterra
ean climate characteristics of Tunisia (Ben-Hammouda et al., 2009). This approach to increasing biomass production should encourage farmers to invest in CA farm research and the specialized equipment, particularly the no-till drill that could have many annual uses and pay off its cost much more rapidly.
CAWC Symposium and Expo 2014
5 to 7 August
Durbanville Horse Racing course

This short add is just to inform you of the upcoming 2014 symposium and what it will offer our members and also non-members. The symposium will coincide with an expo. The expo will be on conservation agriculture implements and products, thus no plows will be welcome. The theme for the symposium this year is “Soil Health” and we will be welcoming international speakers as well as some locals. There will also be a live webinar involved. The first two days of the symposium week will include practical visits to the Swartland and Southern Cape.

The complete programme will be available in the near future and will be advertised in the printed media and on air. Lower symposium cost for members of the CAWC will again be offered. We also invited the Bio-dynamic Society of SA to take part and one of the symposium speakers will be from the society. Dr Johann Strauss will give feedback on the 6th World Conference on Conservation Agriculture being held in Winnipeg.
BLWK/CAWC Webtuiste

Die webtuiste is so opgestel dat enige iemand wat registreer (geen koste verbonde) foto's en videos kan oplaai en selfs vrae kan vra oor probleme wat hulle ondervind en dat antwoorde gegee kan word deur medeprodusente en kundiges. Daar sal ook ‘n databank van die vrae gehou word as daar in die toekoms weer so ‘n vraag opduik.

Ons beplan ook om deur die loop van die jaar videos te maak en beskikbaar te stel, waar kundiges oor spesifieke onderwerpe gesels. Ek wil almal uitnooi om deel te raak van ‘n lewendige webtuiste wat spesifiek gebou is om ons bewaringslandbougemeenskap in die Wes-Kaap te ondersteun. Toekomstige nuusbriewe sal ook op die webtuiste beskikbaar wees.

Van volgende jaar af sal die nuusbrief slegs kort grepe uit artikels bevat en datums deurgee van groen en bruintoere. Die volledige artikels sal op die webtuiste beskikbaar wees.

Die webadres is as volg:

www.blwk.co.za

Sien julle almal aanlyn..........................
INLIGTING TEN OPSIGTE VAN DIE BEWARING SLANDBOUVERVERENIGING SE LEDEGELD

Ons ledetal het aansienlik gegroei gedurende die jaar en het ons die 50 merk verbygesteek.
Ons sal in die komende jaar fakteur uitstuur aan huidige lede en andere vir die hemuwing van ledegeld of nuwe lidmaatskap.
Ledegeld beloop R200 per plaas, met 'n maksimum van 2 lede wat toegelaat word, vir elke 2 bykomende lidmaatskappe sal 'n verdere R200 betaalbaar wees.
Hierdie reëling geld ook ten opsigte van ander instansies soos chemiese agente ens.
Aangeheg is die kontak besonderhede van ons finansiële mense.
Indien iemand wil aansluit kan hulle net 'n e-pos stuur aan Gerty Mostert en dan sal sy vir julle 'n faktuur stuur.
Die ledegeld gaan vir die instandhouding van die webtuiste. Asook vir verversings gedurende bruin- en groentoere gedurende die seisoen.

Kontakbesonderhede:
BLWK/CAWC
Gerty Mostert (gertym@elsenburg.com)
Verskaf asb in die e-pos die naam van die plaas of instansie en die person aan wie faktuur uitgemaak moet word.